If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49n^2-121=0
a = 49; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·49·(-121)
Δ = 23716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{23716}=154$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-154}{2*49}=\frac{-154}{98} =-1+4/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+154}{2*49}=\frac{154}{98} =1+4/7 $
| 4(t+2)=16 | | 5=-2x=11 | | 2.6r+11=–4.9r+29 | | (14x-3)=(7x=18) | | x2=91/100 | | (s+3)/(-3)=10 | | 19=5(x+9) | | 3^4x-1=6 | | x/7-3=-3 | | (X^2+6-7)(2x^2-5x-3)=0 | | 7+3(-1x)=5-2(3-4x) | | X=7,y= | | a-3+3=15 | | 7x+3=8x+1/5 | | 2(x+3)=2(x+3) | | 7(-6-x)=56 | | 10(2x+20)=15x+100 | | f-7=-5 | | -5x-20=5x+30 | | 5(u+2)=15 | | 2(2x+5)=45+45 | | 2u-2=9 | | 14(q+1)=14 | | 4.5/x=1.8 | | -12=-5+a | | 6x-20=40-4x | | 10f−7=4−f | | 2(x+3)=-3x-6-3 | | 10=-5+s | | 14.2m-25.2=3.8m+26.8 | | 7(x+4)=-3x-12 | | (p+2)/(20)=5 |